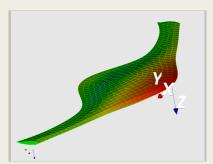
Small Business Innovation Research/Small Business Tech Transfer

Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design, Phase II




Completed Technology Project (2016 - 2019)

Project Introduction

We propose the development of a novel aerodynamic modeling approach making use of fully unstructured grids for unsteady panel aerodynamic models for aeroelastic and aeroservoelastic analysis. The unsteady aerodynamic code will be integrated with an existing suite of aeroelastic and aeroservoelastic analysis tools making it possible to perform aeroelastic and aeroservoelastic analysis of complex vehicles with a significant reduction in user effort and improvement in fidelity.

Primary U.S. Work Locations and Key Partners

Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design, Phase II

Table of Contents

Project Introduction Primary U.S. Work Locations	1
•	1
and Key Partners	
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Images	3
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design, Phase II

Completed Technology Project (2016 - 2019)

Organizations Performing Work	Role	Туре	Location
M4 Engineering, Inc.	Lead Organization	Industry Women-Owned Small Business (WOSB)	Long Beach, California
Armstrong Flight Research Center(AFRC)	Supporting Organization	NASA Center	Edwards, California
University of Washington- Seattle Campus(UW)	Supporting Organization	Academia Alaska Native and Native Hawaiian Serving Institutions (ANNH), Asian American Native American Pacific Islander (AANAPISI)	Seattle, Washington

Primary U.S. Work Locations	
California	Washington

Project Transitions

September 2016: Project Start

June 2019: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140787)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

M4 Engineering, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

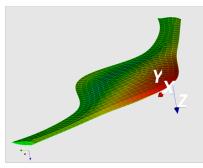
Carlos Torrez

Principal Investigator:

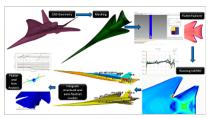
Myles Baker

Co-Investigator:

Myles Baker

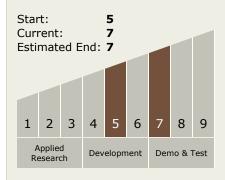


Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design, Phase II


Completed Technology Project (2016 - 2019)

Images

Briefing Chart Image


Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design, Phase II (https://techport.nasa.gov/imag e/130857)

Final Summary Chart Image

Innovative Aerodynamic Modeling for Aeroservoelastic Analysis and Design, Phase II (https://techport.nasa.gov/imag e/129271)

Technology Maturity (TRL)

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - └─ TX02.1 Avionics
 Component Technologies

 └─ TX02.1.3 High
 Performance Processors

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

